
人工智能推理是指利用已经训练好的人工智能模型,在实际场景中进行各种任务,如生成文本、回答问题、识别图像等。埃杜诺夫表示,他通过简单的数学计算,估计了明年全球推理需求的用电量。他假设,明年全球会新增 100 万到 200 万个 Nvidia H100 图形处理器,每个处理器的功率约为 1 千瓦。如果每个处理器每天运行 24 小时,每人每天可生成 10 万个“token”。他认为以人类规模来看,这用电量尚属合理。全球仅需新增两座核电站,就可以提供足够电力。
不过IT之家注意到,埃杜诺夫也指出,人工智能的发展还面临着一些挑战和限制,其中之一是数据量的问题。目前,人工智能模型的训练需要大量的数据,而公开的互联网数据已经不足以支撑下一代模型的训练。下一代模型可能需要 10 倍的数据量,这意味着需要更多的专业领域的数据,或者更多的多模态数据,如视频、音频等。另一个挑战是供应链的问题。由于全球芯片产能的紧张,人工智能模型的改进速度也会受到影响。因此,研究人员正努力提高模型的效率,以减少对数据和硬件的依赖。例如,Salesforce 公司开发了 Blib-2,这是一种能够自动调整模型大小的技术,可以根据不同的任务和资源需求,动态地缩小或扩大模型。
业内专家普遍认为,语言模型在两年内将为企业带来巨大价值。埃杜诺夫预计,三四年内我们将知晓当前技术是否能实现通用人工智能。
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。
未经允许不得转载:新聚网 » Meta 工程师:明年全球 AI 推理用电量仅需新增两座核电站即可满足

新聚网
哈佛大学开源 AI 训练数据集“Institutional Books 1.0”,涵盖馆藏 98.3 万本图书
Android XR 智能眼镜 XREAL Project Aura 重要参数公布:双芯驱动,70+° FoV
全球首个儿科大模型在北京荣华医院落地,诊断准确率优于主治医师平均水平
小米米家前开盖旅行箱 18 英寸开启众筹,369 元
共建韩国最大 AI 数据中心、容纳 6 万个 GPU,亚马逊 AWS 与 SK 集团合作
OpenAI Codex 人工智能编程工具推出新功能:可一次生成多个方案
性能提升 90%,Anthropic 首次公开多智能体系统构建全流程





