一句话总结 —— “在训练中使用模型生成的内容,将导致后续生成的模型出现不可逆转的缺陷”,说人话就是研究人员发现“用 AI 生成的结果训练 AI,只会让模型变得越来越差”。

据悉,研究人员专门研究了 AI 生成模型的概率分布,主要围绕“文本到文本”和“图像到图像”展开,最终得出结论:“由于每个模型生成的结果都具有一定的特点,因此用 AI 生成的模型训练 AI,随着时间的推移,后者会忘记真正的底层数据分布。”

论文的主要作者之一 Ilia Shumailov 同时表示“随着时间的推移,生成数据中的错误(IT之家注:例如虚假举例)会迫使 AI 进一步错误地感知现实,我们惊讶地观察到模型崩溃发生的速度相当快,模型可以迅速忘记他们最初从中学习的大部分原始数据。”
但小伙伴们可能会有所疑问,如果将 AI 生成的结果经过人工润色后再投入模型训练,是否可以避免模型“退化”?
答案是否定的,研究人员发现“模型退化过程是不可避免的”,因此即使对于“经过润色后理想化的 AI 输出内容”,模型在长期学习后,也会出现一定的退化现象。
对于任何大模型而言,由于其学习数据过多,它们都将不可避免地接触到其他 AI 生成的数据,因此研究人员表示“应当引入 AI 鉴定来挑出可能存在错误的学习数据”以提升模型的学习能力与准确性。
未经允许不得转载:新聚网 » 套娃不可取:研究人员证实用 AI 生成的结果训练 AI 将导致模型退化乃至崩溃

新聚网
哈佛大学开源 AI 训练数据集“Institutional Books 1.0”,涵盖馆藏 98.3 万本图书
Android XR 智能眼镜 XREAL Project Aura 重要参数公布:双芯驱动,70+° FoV
全球首个儿科大模型在北京荣华医院落地,诊断准确率优于主治医师平均水平
小米米家前开盖旅行箱 18 英寸开启众筹,369 元
共建韩国最大 AI 数据中心、容纳 6 万个 GPU,亚马逊 AWS 与 SK 集团合作
OpenAI Codex 人工智能编程工具推出新功能:可一次生成多个方案
性能提升 90%,Anthropic 首次公开多智能体系统构建全流程





