感谢IT之家网友 你好啊_兔子 的线索投递!
IT之家从鸿海官网得知,QCNet 是一种智能轨迹预测模型,主要优势在于能够理解真实驾驶场景的全局信息,将 ChatGPT 相同技术基础的 Transformer 架构修改为适用于自动驾驶场景,使其学习车辆历史轨迹,车辆间交互行为、道路环境等多样性与不确定性。
据悉,QCNet 可预测车辆未来 6 至 8 秒内的运动轨迹,同时对场景中的多个目标进行准确地预测,编码器计算效率提升 85%。同时,QCNet 为车道、斑马线、车辆、行人等交通场景中的每一个场景元素分别建立了一套局部坐标系,在局部坐标系下学习表征,并通过相对时空位置编码来捕捉不同场景元素之间的相对关系,提升模型的实时计算效率。
未经允许不得转载:新聚网 » 鸿海推出新时代自动驾驶轨迹预测深度学习模型“QCNet”

新聚网
哈佛大学开源 AI 训练数据集“Institutional Books 1.0”,涵盖馆藏 98.3 万本图书
Android XR 智能眼镜 XREAL Project Aura 重要参数公布:双芯驱动,70+° FoV
全球首个儿科大模型在北京荣华医院落地,诊断准确率优于主治医师平均水平
小米米家前开盖旅行箱 18 英寸开启众筹,369 元
共建韩国最大 AI 数据中心、容纳 6 万个 GPU,亚马逊 AWS 与 SK 集团合作
OpenAI Codex 人工智能编程工具推出新功能:可一次生成多个方案
性能提升 90%,Anthropic 首次公开多智能体系统构建全流程





