CameraX + MLKit 打造超简单 OCR 方案

1. CameraX 实现相机预览

1.1 CameraX 简介

Android 自 5.0 开始引入了全新的相机框架 Camera2 ,相较于之前的 Camera1 对多摄像头的支持更加友好,功能更加强大,但使用成本也更高。此背景下谷歌发布了 CameraX,它基于 Camera2 封装,大大提高了 API 的易用性。我们可以用很少的代码搭建出面向特定场景的相机应用,OCR 就是一种典型的相机应用场景 。

CameraX 引入 UseCase 的概念完成各种相机能力,UseCase 有利于功能模块的解耦,聚焦特定领域进行功能开发。CameraX 默认提供了几个常用的 UseCase 实现,能够满足大多数场景下的使用

  • Preview : 提供相机取景和预览

  • ImageCapture:拍照并保存图片

  • ImageAnalysis:处理预览帧图片

本文 OCR 场景中将会使用到 PreviewImageAnalysis 这两个 UseCase。Preview 帮助我们实现相机的取景和预览,ImageAnalysis 帮助我们将采集的图片送入 OCR 分析。

接下来让我们使用 CameraX 一步步完成相机预览功能

1.2 工程引入 CameraX

首先,在 Gradle 中引入 CameraX 相关库如下

implementation "androidx.camera:camera-lifecycle:1.2.0" implementation "androidx.camera:camera-view:1.2.0" implementation "androidx.camera:camera-camera2:1.2.0"

另外,需要使用相机,所以在 AndroidManifest 中申请相机权限

<uses-permission android:name="android.permission.CAMERA"     tools:ignore="PermissionImpliesUnsupportedChromeOsHardware" />

1.3 获取 ProcessCameraProvider

CameraX 通过 ProcessCameraProvider 访问相机实例。顾名思义,ProcessCamera  表示每个 Application Process 期间可使用的相机服务,所以 ProcessCameraProvider 是一个进程单例,通过 getInstance 创建并获取。创建是一个异步过程,所以借助 CameraProviderFuture 异步返回:

// 通过 cameraProviderFuture 异步返回创建的 ProcessCameraProvider 实例 val cameraProviderFuture = ProcessCameraProvider.getInstance(context)  //监听 ProcessCameraProvider 获取成功 cameraProviderFuture.addListener(     Runnable {         //获取 cameraProvider         val cameraProvider = cameraProviderFuture.get()         ...     },      ContextCompat.getMainExecutor(context) // Runnable 运行的 Executor )

在 Runnable 中成功获取 ProcessCameraProvider 单例,接下来可以用它来组装 UseCase ,实现相机功能了。

CameraX 的一个重要特征是 LifecycleAware,相机可以根据应用的前后台情况自动开启或关闭,降低开发者的心智负担。ProcessCameraProvider 添加 UseCase 时会关联 LifecycleOwner。

UseCase 根据 Lifecycle 调用 onStateAttached / onStateDetatched,当我们自定义 UseCase 时,可以在这里进行一些自定义前 / 后处理。

1.4 添加 Preview UseCase

//选择后置镜头 val cameraSelector =     CameraSelector.Builder().requireLensFacing(CameraSelector.LENS_FACING_BACK).build()  //添加 Preivew UseCase  cameraProvider.bindToLifecycle(      lifecycleOwner,       cameraSelector,      preview )

如上,ProcessCameraProvicer#bindToLifecycle 添加 Preview 。

Preview UseCase 的创建非常简单,如下:

val preview = Preview.Builder().build().ly {     setSurfaceProvider(previewView.surfaceProvider) }

创建 Preview 的关键是设置渲染用的 Surface,这是通过 PreviewView 获取的。

PreviewView 是 CameraX 提供的用于显示相机预览流的自定义 View,它内部可以根据需要切换 TexureView 或者 SurfaceView。

SurfaceView 有更好的性能,但在 Android 7.0 之前无法实现旋转、透明、动画等常规自定义 View 的能力,此时需要使用 TextureView 替代。PreviewView 默认使用性能优先的 SurfaceView,如果如果需要其有更好的兼容性,则可以设置 previewView.implementationMode = PreviewView.ImplementationMode.COMPATIBLE

1.5 布局 PreviewView

我们可以像下面这样在 xml 中布局使用 PreviewView

<FrameLayout     android:id="@+id/container">         <androidx.camera.view.PreviewView             android:id="@+id/previewView" /> </FrameLayout>

如果我们使用 Compose 渲染 UI ,可以借助 AndroidView 显示 PreviewView,Compose 展示相机预览的代码大体如下所示:

@Composable fun CameraScreen() {      //获取 ProcessCameraProvider     val cameraProviderFuture = remember {         ProcessCameraProvider.getInstance(context)     }          // 显示预览     AndroidView(         modifier = Modifier.fillMaxSize(),         factory = { ctx ->             PreviewView(ctx).ly {                 cameraProviderFuture.addListener({                     val cameraProvider = cameraProviderFuture.get()                     val preview = //略                     val cameraSelector = //略                                         cameraProvider.unbindAll()                     cameraProvider.bindToLifecycle(                         LocalLifecycleOwner.current,                         cameraSelector,                         preview                     )                              }, ContextCompat.getMainExecutor(previewView.context))         }     })      }

2. MLKit 实现文字识别

2.1 MLKit 简介

MLKit 是谷歌的面向移动端开发者的机器学习库,帮助移动应用在离线状态下使用各种端智能技术,例如:

智能视觉处理:二维码扫描、文字识别、人脸检测、物体捕捉等;

自然语言处理:语言识别、智能回复、自动翻译等

这些端上的技术让应用变得更加智能的同时依然保持高性能,更重要的是这一切都是免费的,且不依赖 GMS(Google Mobile Service)。

2.2 工程引入 MLKit

本文我们主要使用到 MLKit 的文字识别功能,只需要添加以下依赖即可:

implementation 'com.google.mlkit:text-recognition-chinese:16.0.0-6'

text-recognition-chinese 可以识别中文字符,另外也有其他的 Artifact 可以识别日文韩文等非拉丁系的语言。

2.3 CameraX 实现图像分析

前面我们通过 Preview 实现了相机预览,接下来我们为 CameraProvider 添加 ImageAnalysis ,它可以接收相机的预览帧用于图像分析和处理。

val imageAnalysis = ImageAnalysis.Builder)     .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST).build()     .ly          //设置图像分析器         setAnalyzer             Executors.newSingleThreadExecutor(),             OcrAnalyzer  result: String -                 //基于 MLKit 处理 OCR,并返回 result                                cameraProvider.bindToLifecycle     LocalLifecycleOwner.current,     cameraSelector,     preview,     imageAnalysis // 增加 ImageAnalysis 能力,关联 Lifecycle

setBackpressureStrategy 是设置预览帧的生产消费的缓冲策略,其默认值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST 表示在每一帧没有分析结束之前,新的渲染帧会自动丢弃,避免排队。

ImageAnalysis#setAnalyzer 添加自定义图像分析器,这里我们定义一个 OcrAnalyzer,它基于 MLKit 实现 OCR 功能。

2.4 自定义 OcrAnalyzer

class OcrAnalyzer(     private val onRecognized : (result: String) -> Unit ) : ImageAnalysis.Analyzer {      // 获取可识别中文的 TextRecognition     private val recognition =          TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())              // 对 Image 进行处理     override fun analyze(imageProxy: ImageProxy) {         val image = imageProxy.image          if (image != null) {             val imageRotation = imageProxy.imageInfo.rotationDegrees             val inputImage = InputImage.fromMediaImage(image, imageRotation)             recognition.process(inputImage)                 .addOnSuccessListener { recognizedText ->                     val textBlocks = recognizedText.textBlocks                     //解析 textBlocks 获取所需的信息并返回                     extractText(textBlocks)?.let { onRecognized(it) }                     imageProxy.close()                 }.addOnFailureListener {                     imageProxy.close()                 }         }      } }

ImageAnalysis.Analyzer 返回的 ImageProxy 中包含了预览帧信息:

imageProxy.image:图像信息

ImageInfo.rotationDegrees:根据设备情况获得的图片旋转角度。

InputImage.fromMediaImage 根据这两个参数获取具体的 InputImage,后者提交 recognition 处理。这里的 recognition 是一个可识别中文的 TextRecognition。

2.5 解析 TextBlocks

经过 TextRecognition 文字识别后将返回 Block / Line / Element 这样的数据结构,这种结构有利于进一步细粒度的解析。

Block 代表一个自然段落,由若干 Line(行) 组成,每一个 Line 又包含多个 Element(单词) 。

假设我们希望从身份证中获取姓名以及身份证号,虽然不确定身份证这样的排版会被识别为怎样的 Block,但是姓名和身份证号肯定处于不同 Line 中。我们定义 extractText 方法,将所有的 Block 下的 Line 聚合到一起,统一进行解析:

private fun extractText(textBlocks: List<Text.TextBlock>): String {     val lines = textBlocks.flatMap { it.lines }     var name = "unknown"     var id = "unknown"     lines.forEach {         val lineText = it.elements.joinToString { it.text }         if (lineText.contains("姓名")) {             name = lineText.substringAfter("姓名")         }         if (lineText.contains("公民身份证号码")) {             id = lineText.substringAfter("公民身份证号码")         }     }     return "$name/n$id" }

成功识别文字后的效果如下:

结束语

透过文字识别这样一个小的应用场景,我们切实感受到了 CameraX 以及 MLKit 开箱即用般的的易用性。作为谷歌官方工具包,它们还与 Compose 等其他 Jetpack 组件有着不错的兼容性。感谢谷歌强大的开发者生态,让开发者们可以低成本地开发自己的移动应用。

  • CameraX:https://developer.android.com/training/camerax

  • MLKit:https://developers.google.com/ml-kit

本文来自微信公众号:AndroidPub (ID:gh_e312d1adb6ec),作者:fundroid

未经允许不得转载:新聚网 » CameraX + MLKit 打造超简单 OCR 方案

赞 (0) 打赏