
由于系统规模巨大且任务高度同步,单个显卡故障可能导致整个训练任务中断,需要重新开始。尽管如此,Meta 团队还是保持了 90% 以上的有效训练时间。
IT之家注意到,在为期 54 天的预预训练中,共出现了 466 次工作中断,其中 47 次是计划中断,419 次是意外中断。计划内的中断是由于自动化维护造成的,而意外的中断则主要源于硬件问题。 GPU 问题是导致故障的主要原因,占意外中断的 58.7%。其中只有三起事件需要大量人工干预,其余的由自动化管理。

在 419 个意外中断中,148 个(30.1%)是由各种 GPU 故障(包括 NVLink 故障)引起的,而 72 个(17.2%)是由 GPU 的 HBM3 内存故障引起的。有趣的是,54 天内只有两个 CPU 发生故障。41.3% 的意外中断是由多种因素造成的,包括软件错误、网络电缆和网络适配器。
为提高效率,Meta 团队开发了一系列工具和优化策略,包括缩短任务启动和检查点时间、利用 PyTorch 的 NCCL 飞行记录器诊断性能问题、识别拖后显卡等。此外,Meta 还关注到了环境因素的影响,如午间温度波动对 GPU 性能的轻微影响,以及巨量 GPU 同时运行对数据中心电网的巨大压力。
然而,随着人工智能模型参数量的不断增加,所需的计算资源也随之扩大。以 xAI 计划中的 10 万块 H100 显卡集群为例,故障率可能会成倍增长,给未来的 AI 训练带来更大的挑战。
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。
未经允许不得转载:新聚网 » Meta 训练 Llama 3 遭遇频繁故障:16384 块 H100 GPU 训练集群每 3 小时“罢工”一次

新聚网
哈佛大学开源 AI 训练数据集“Institutional Books 1.0”,涵盖馆藏 98.3 万本图书
Android XR 智能眼镜 XREAL Project Aura 重要参数公布:双芯驱动,70+° FoV
全球首个儿科大模型在北京荣华医院落地,诊断准确率优于主治医师平均水平
小米米家前开盖旅行箱 18 英寸开启众筹,369 元
共建韩国最大 AI 数据中心、容纳 6 万个 GPU,亚马逊 AWS 与 SK 集团合作
OpenAI Codex 人工智能编程工具推出新功能:可一次生成多个方案
性能提升 90%,Anthropic 首次公开多智能体系统构建全流程





